Margin Requirements and Portfolio Optimization: A Geometric Approach

نویسنده

  • Sheng Guo
چکیده

Using geometric illustrations, we investigate what implications of portfolio optimization in equilibrium can be generated by the simple mean-variance framework, under margin borrowing restrictions. First, we investigate the case of uniform marginability on all risky assets. It is shown that changing from unlimited borrowing to margin borrowing shifts the market portfolio to a riskier combination, accompanied by a higher risk premium and a lower price of risk. With the linear risk-return preference, more stringent margin requirements lead to a riskier market portfolio, contrary to the conventional belief. Second, we investigate the effects of differential marginability on portfolio optimization by allowing only one of the risky assets to be pledged as collateral. It is shown that the resulting optimal portfolio is not always tilted towards holding more of the marginable asset, when the margin requirement is loosened. JEL classification: G11 key words: portfolio optimization; margin; collateral; borrowing constraint; mean-variance; efficient frontier; asset allocation All errors are mine. First draft: July 2013. Correspondence address: Department of Economics, Florida International University, 11200 SW 8th Street, DM 318A, Miami, FL 33199. Email: [email protected]; Tel:(305)348-2735; Fax: (305)348-1524.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling a Risk - Based Criterion for a Portfolio with Options ∗

The presence of options in a portfolio fundamentally alters the portfolio’s risk and return profiles when compared to an all equity portfolio. In this paper, we advocate modeling a risk-based criterion for optioned portfolio selection and rebalancing problems. The criterion is inspired by Chicago Mercantile Exchange’s risk-based margining system which sets the collateralization requirements on ...

متن کامل

Robustness-based portfolio optimization under epistemic uncertainty

In this paper, we propose formulations and algorithms for robust portfolio optimization under both aleatory uncertainty (i.e., natural variability) and epistemic uncertainty (i.e., imprecise probabilistic information) arising from interval data. Epistemic uncertainty is represented using two approaches: (1) moment bounding approach and (2) likelihood-based approach. This paper first proposes a ...

متن کامل

Stock Portfolio Optimization Using Water Cycle Algorithm (Comparative Approach)

Portfolio selection process is a subject focused by many researchers. Various criteria involved in this process have undergone alterations over time, necessitating the use of appropriate investment decision support tools. An optimization approach used in different sciences is using meta-heuristic algorithms. In the present study, using Water Cycle Algorithm (WCA), a model was introduced for sel...

متن کامل

Lexicographic goal programming approach for portfolio optimization

This paper will investigate the optimum portfolio for an investor, taking into account 5 criteria. The mean variance model of portfolio optimization that was introduced by Markowitz includes two objective functions; these two criteria, risk and return do not encompass all of the information about investment; information like annual dividends, S&P star ranking and return in later years which is ...

متن کامل

Robustness in portfolio optimization based on minimax regret approach

Portfolio optimization is one of the most important issues for effective and economic investment. There is plenty of research in the literature addressing this issue. Most of these pieces of research attempt to make the Markowitz’s primary portfolio selection model more realistic or seek to solve the model for obtaining fairly optimum portfolios. An efficient frontier in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017